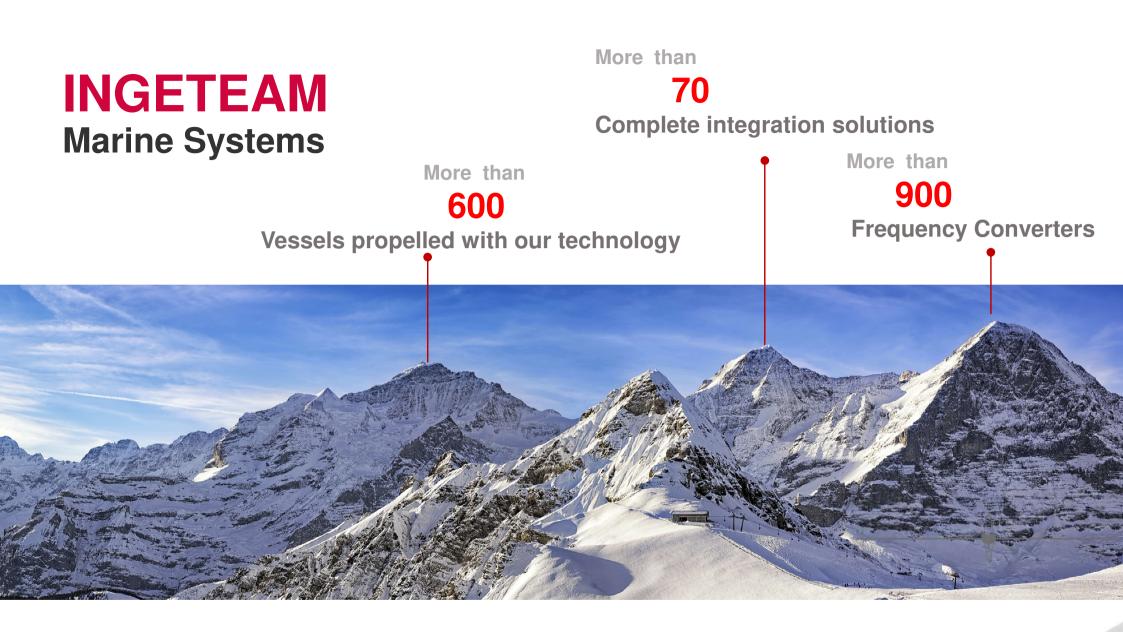


READY FOR YOUR CHALLENGES

www.ingeteam.com

INGETEAM Marine Systems

We are the business unit within our group dedicated to Electric and Automation Engineering for the Marine sector.


INGETEAM POWER TECHNOLOGY-MARINE SYSTEMS provides the following products for the marine sector:

Low Voltage and High Voltage Electrical Plants:

Generators. Main switchboards. Transformers. Electric motors. Frequency converters.

Automation:

Energy Management System (Ingeship EMS) Propulsion control system (Ingeship PCS). Power management system (Ingeship PMS). Alarm and monitoring control system (Ingeship AMCS). Integrated Dredging Control System (Ingeship DMC).

INGETEAM Marine Systems

- 1. Main and Auxiliary Propulsions
- 2. Dredgers
- 3. Silent Propulsion for Research Vessels
- 4. Hybrid Electrical Drives. PTI/PTO
- 5. Battery integration on diesel electric ships

- 6. On-Shore Power Supply
- 7. Special Ships
- 8. Passenger Vessels

Main & Auxiliary Propulsions [AFE vs DFE]

NameB618/1 & B618/2ShipownerMaritime Authorities in GdyniaShipyardRemontowa Shipbuilding S.A.Vessel typeMultipurpose Service Vessel

Main advantages of the AFE Topology

- Size-Weight optimization
- Supply quality
- Grid stability
- Energy saved from the stopping of the propeller
- DC Bus regulation
- Power factor regulation
- Less cabling

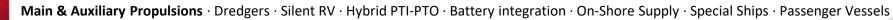
INGETEAM Main & Auxiliary Propulsions [AFE vs DFE]

NameVICTOR ANGELESCUShipownerINIDEP - ARGENTINAShipyardARMON SHIPYARDVessel typeOceanographic Research Vessel

Main advantages of the AFE Topology

- Size-Weight optimization
- Supply quality
- Grid stability
- Energy saved from the stopping of the propeller
- DC Bus regulation
- Power factor regulation
- Less cabling

INGETEAM Main & Auxiliary Propulsions [LV vs MV]

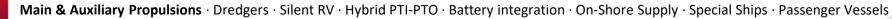

NameKHANKENDIShipownerBRITISH PETROLEUMShipyardKeppel Singmarine BakuVessel typeSubsea Construction Vessel

Low Voltage

- Low-Medium Power Range
 - P < 4MW
- More redundancy possibilities
- Usually cost effective

Low and Medium voltage selection should be made to optimize the vessel solution in terms of size, cost, weight and cabling

INGETEAM Main & Auxiliary Propulsions [LV vs MV]


NameSIMON STEVINShipownerJAN DE NULShipyardCNN La NavalVessel typeFall Pipe and Mining Vessel

Medium Voltage

- Medium-High Power Range
 P > 3MW
- Reduced Electrical Cabling

Low and Medium voltage selection should be made to optimize the vessel solution in terms of size, cost, weight and cabling

INGETEAM Main & Auxiliary Propulsions [DP2 / DP3]

Name	ADAMS CHALLENGE
Shipowner	Adams Offshore W.L.L
Shipyard	BALENCIAGA SHIPYARD
Vessel type	Multipurpose Diving Support V

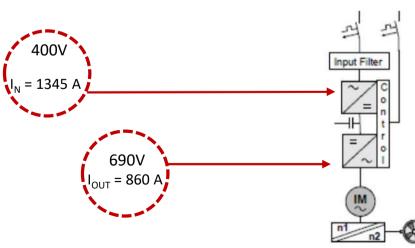
DP2. Double SB/PS feeding

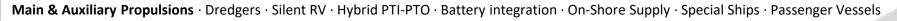
- DP2: In the event of a electrical grid black-out, the vessel has to be able to maintain its position with a given accuracy
- DP3: In addition to DP2 requirements, DP3 requires that vessel position has to be maintained in the event of flood and / or fire in the electrical room

INGETEAM Main & Auxiliary Propulsions [DP2 / DP3]

Name	LIVING STONE
Shipowner	DEME
Shipyard	CNN LA NAVAL
Vessel type	Multipurpose Cable Laying Ve
DP3. Built –in Static Converter for	
	Auxiliaries Feeding

- DP2: In the event of a electrical grid black-out, the vessel has to be able to maintain its position with a given accuracy
- DP3: In addition to DP2 requirements, DP3 requires that vessel position has to be maintained in the event of flood and / or fire in the electrical room


INGETEAM Main & Auxiliary Propulsions [AFE Voltage Booster]


Name	NB-348
Shipowner	BALEARIA
Shipyard	CNN LA NAVAL
Vessel type	RoRo Passenger Vessel

AFE Voltage Booster

- Small Footprint
- Reduced Cabling in motor side

INGETEAM Dredgers

Name	Cristobal Colón / Leiv Eiriksson
Shipowner	JAN DE NUL
Shipvard	CNN La Naval

Vessel type 46.000m³ Trailing Suction Hopper Dredger

The largest **TSHD** dredgers in the world

INGETEAM Dredgers

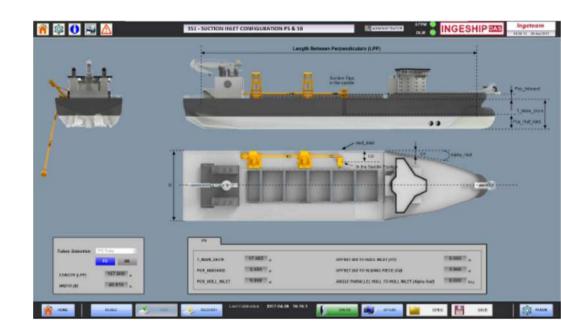
Name	VOX AMALIA
	VOX ALEXIA
Shipowner	VAN OORD
Shipyard	CNN LA NAVAL
Vessel type	Trailing Suction H

lopper Dredger **y** |

INGETEAM – Ingeship DAS Dredging Automation System

Name	ORTELIUS / SANDERUS

Shipowner JAN DE NUL


- Shipyard Keppel Singmarine (Singapore)
- Vessel type 6.000m³ Trailing Suction Hopper Dredger

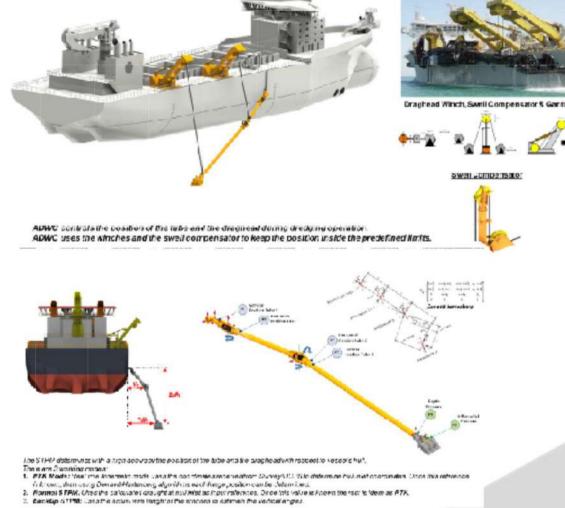
INGESHIP DAS (Dredging Automation System)

An advanced automation system specifically developed for TSHD suction dredgers, using the latest techniques in the development of control systems.

INGESHIP DAS is a level 2 technological control (process - production), able to be coupled and complemented with any basic automation system of the dredging process (level 0 & 1).

The system is completed with a simulation model a TSHD dredger that allows the validation of the solution using vHIL techniques.

INGETEAM – Ingeship DAS Dredging Automation System


Name	8700
Shipowner	JAN DE NUL
Shipyard	COSCO DALIAN
Vessel type	18.000m ³ Trailing Suction Hopper Dredger

INGESHIP DAS (Dredging Automation System)

An advanced automation system specifically developed for TSHD suction dredgers, using the latest techniques in the development of control systems.

INGESHIP DAS is a level 2 technological control (process - production), able to be coupled and complemented with any basic automation system of the dredging process (level 0 & 1).

The system is completed with a simulation model a TSHD dredger that allows the validation of the solution using vHIL techniques.

READYFOR YOUR CHALLENGES

INGETEAM – Ingeship CCS Cable Control System

Purpose:

Used during the **underwater cables** installation phase of the offshore projects Used for **laying**, **lifting and repair** underwater cables

Cable System Equipment:

Large turntables or carousels which allow cables to be stored without bending it too much

Jacking systems, loading and lay tensioners, gooseneck, wheeled haulers, loading arms, catenary slack, tugger winches, etc. which allow cable to be laid and lifted in a proper way

Control Systems:

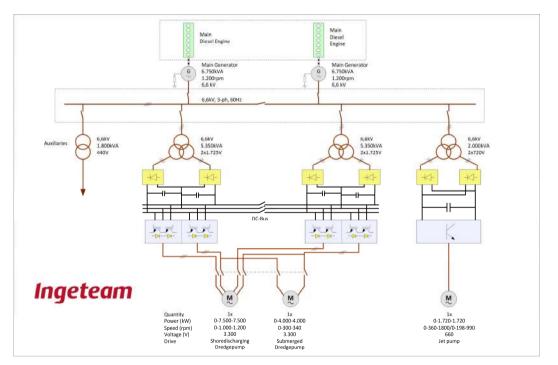
Dynamic Positioning (DP): to automatically maintain vessel's position and track

Cable Control System (CCS): to control the cable system equipment and synchronize the speed of the vessel with the speed of the cable process

INGETEAM – Ingeship BESS Battery Energy Storage System

Ingeteam's Containerized Battery Energy Storage System provides a high efficiency compact hybrid power solution for electric propulsion vessels. Ingeteam's Battery Energy Storage Systems (BESS) is a compact battery storage solution controlled by an optimized energy management system that enhances vessel's power plant capabilities. Ingeteam's BESS turns any standard electric propulsion vessel into a latest generation hybridelectric propulsion vessel

Dredgers [Redundant Topologies]

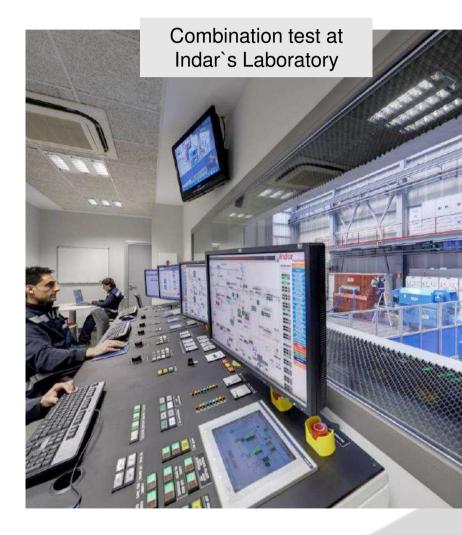

Name	FILIPPO BRUNELLESCHI
	FRANCIS BEAUFORT
Shipowner	JAN DE NUL
Shipyard	CNN La Naval
Vessel type	11.300m ³ Trailing Suction Hopper Dredger

"This topology enables operation at

reduced load so that pipes don't get

blocked if the sand dries inside".

"Also provides a fully *redundant* and *independent* feeding of the


pump, which avoids two pumps in series".

INGETEAM Silent Propulsion [Research Vessel]

ICES 209

- Miguel Oliver SPAIN
- Ramon Margaleff SPAIN
- Angeles Alvariño SPAIN
- Bipo INAPESCA MEXICO
- University of Bergen NORWAY
- INIDEP- ARGENTINA

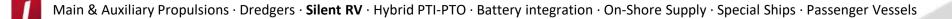
INGETEAM Silent Propulsion [Research Vessel with DC Motors]

NameRAMON MARGALEFShipownerIEOInstituto Español de
OceanografiaShipyardARMON VIGOVessel typeResearch Vessel

Main Propulsion Topologies in DC

- Two independent propulsion motors & propellers.
- One propeller with two motor in

INGETEAM Silent Propulsion [Research Vessel with DC Motors]


NameANGELES ALVARIÑOShipownerIEOInstituto Español de
OceanografiaShipyardARMON VIGOVessel typeResearch Vessel

Main Propulsion Topologies in DC

- Two independent propulsion motors & propellers.
- One propeller with two motor in

tandem arrangement.

Silent Propulsion [Research Vessel with AC Motors]

NameJOSE CARRANZAShipownerINAPESCA - MEXICOShipyardARMON VIGOVessel typeResearch Vessel

Main Propulsion Topologies in AC

- Two independent propulsion motors & propellers.
- One propeller with two motor in

INGETEAM Silent Propulsion [Research Vessel with AC Motors]

NameVICTOR ANGELESCUShipownerINIDEP - ARGENTINAShipyardARMON VIGOVessel typeResearch Vessel

Main Propulsion Topologies in AC

Two independent propulsion

motors & propellers.

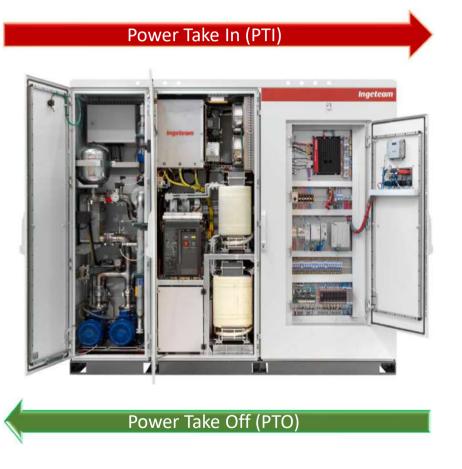
One propeller with two motor in

INGETEAM Silent Propulsion [Research Vessel with AC Motors]

NameFRIDTJOF NANSENShipownerIMR NORWAYShipyardGONDAN SHIPYARDVessel typeResearch Vessel

Main Propulsion Topologies in AC

- Two independent propulsion
 - motors & propellers.
- One propeller with two motor in



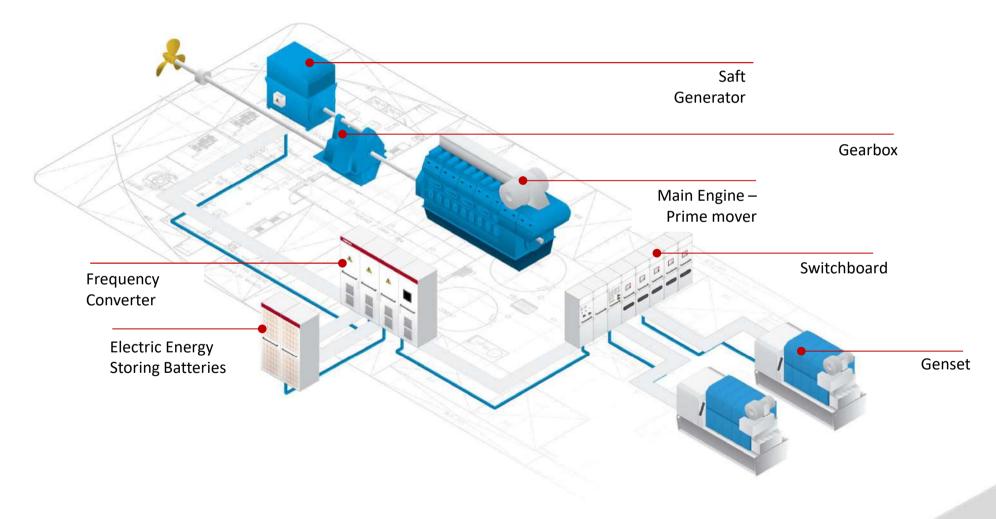
INGETEAM Hybrid electrical Systems [Topologies PTI / PTO Concept]

Grid Side AFE for dual functionality Circuit Breaker included Filter included for IEEE519 and IEC60092 compliance Short time overload capability: up to 300% 2 seconds Cooling Fully water cooled. No losses to the environment IP54

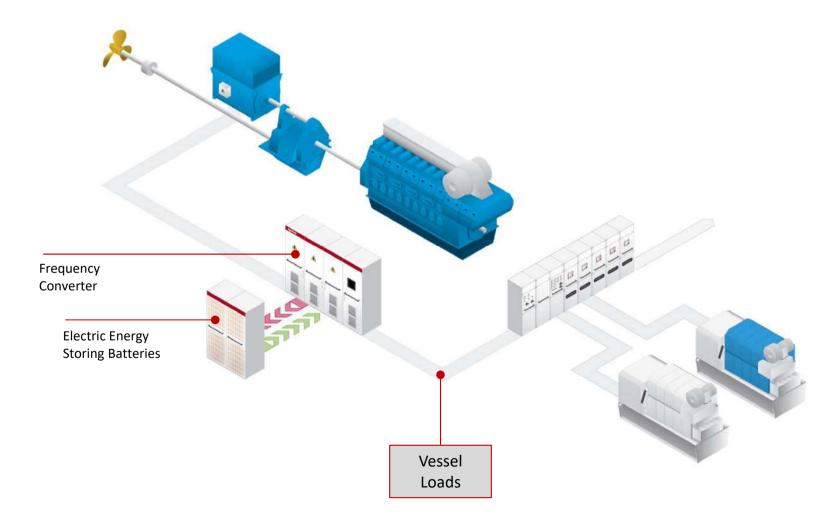
Stand by pump as standard

M/G Side Suitable for asynchronous, synchronous or PM machines

Optional Sinus Filter for standard machines (Retrofits)

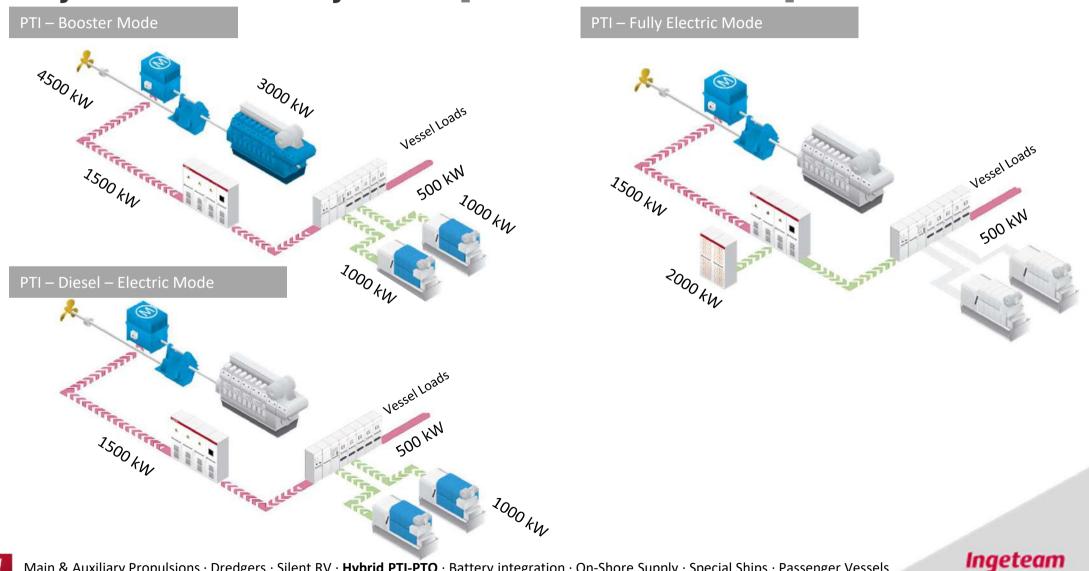

Control

Flexible interface with customer

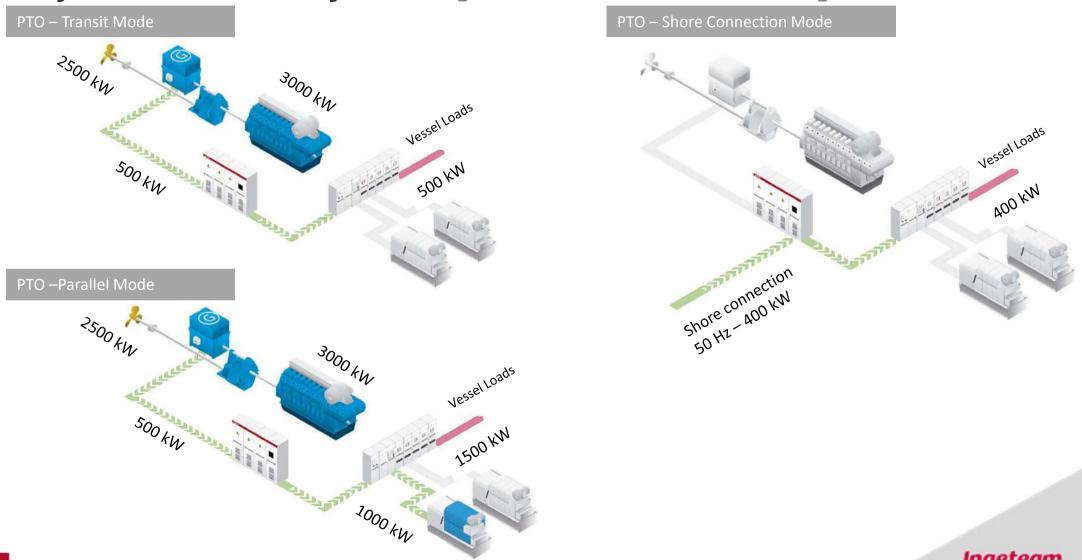

7" screen for operation and analysis

Remote access as standard

Hybrid electrical Systems [Hybrid PTI / PTO]

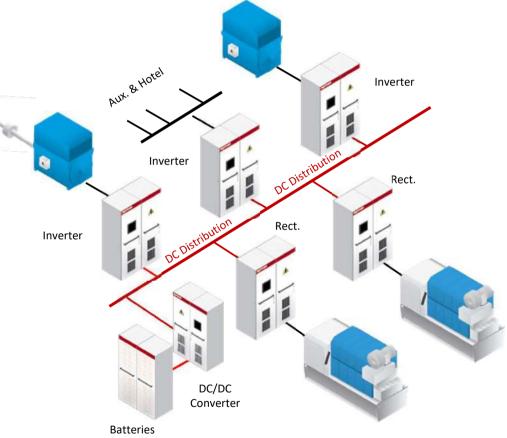


Hybrid electrical systems [Hybrid Energy Storage Systems]

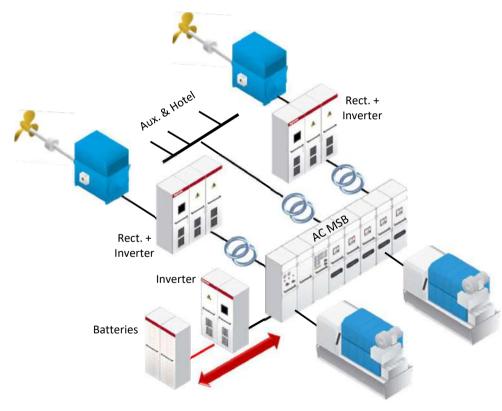

INGETEAM Hybrid electrical systems [Power Take in - PTI]

READY FOR YOUR CHALLENGES

INGETEAM Hybrid electrical systems [Power Take Off - PTO]

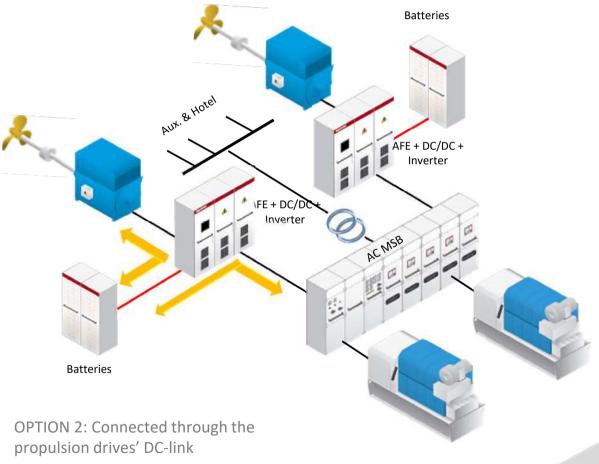

Battery integration on diesel electric ships [Advantages]

- The use of batteries as *spinning reserve* resources (Virtual Gensets) allows to *reduce number of Gensets* running in DP modes
- The use of batteries as smart *storage* load permits the operation of the connected Gensets in *better* specific fuel consumption operating points
- > The use of batteries for grid support allows to perform peak shaving, simplifying the connection of big DOL loads in AC
- The use of batteries for grid stabilization allows to make grids stronger, avoiding possible resonances, especially in DC grids
- The use of batteries allows to *improve vessel dynamics*, specially when *variable speed* generation is used


Battery integration on diesel electric ships [DC Distribution]

- Improves dynamic response of the vessel due to batteries capability to supply energy during Genset acceleration
- > Helps to stabilize the DC distribution grid
- Reduces Variable Speed Generation benefit due to the fact that spinning reserve allows to reduce the number of gensets connected
- Batteries can be connected directly to the DC distribution grid or through a DC/DC inverter
- > Advantages of using a *DC/DC inverter*:
 - > Better control of the power flow through the batteries
 - Fault current limitation and enhanced redundancy by segregation of the batteries
 - Constant DC distribution voltage regardless battery voltage

Battery integration on diesel electric ships [AC MSB]



OPTION 1: Connected to the AC-MSB

- Batteries and inverter act as an *autonomous* subsystem connected to the main AC-MSB
- The system operates as an *emulated Genset*, participating in the voltage & frequency control and simplifying the *peak shaving* and *spinning reserve* functionalities
- Usually, all the stored *energy is concentrated* in one point, thus presenting more risk, and *less redundancy*
- In case of Black-Out of the diesel Gensets, seamless transfer to full electric is possible
- Allows Full Electric Propulsion but is less efficient than the others because there are 3 conversion stages between the batteries and the motor
- > Best and *simplest solution for retrofits*

Battery integration on diesel electric ships [AC VFD DC-Link]

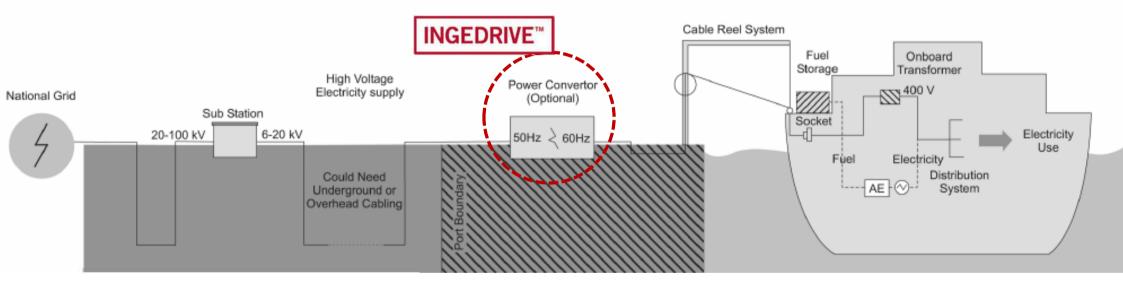
- Operation as an *emulated Genset through* the AFE with the same functionalities
- The system operates in Voltage / Frequency control mode, simplifying the peak shaving and spinning reserve functionalities
- The stored *energy is distributed* along the main drives, thus presenting less risk, and *more redundancy* possibilities

Battery integration on diesel Electric ships [AC VFD DC-Link]

Name **Texelstroom**

Shipowner **TESO**

- Shipyard CNN La Naval [Spain]
- Vessel type Passenger /Ro-Ro Cargo Ship
- > Length 135.4 m, Beam: 27.9 m
- > Double End Ferry for 1,750 passengers and 350 vehicles
- > In operation since 2016
- > 4 x hybrid propulsion drives including:
 - > Inverter for 1,8 MW thruster
 - > DC/DC to control 409 kWh batteries
 - > AFE to connect to the AC-MSB
 - > 400kVA Static Inverter for thruster auxiliaries



TESO

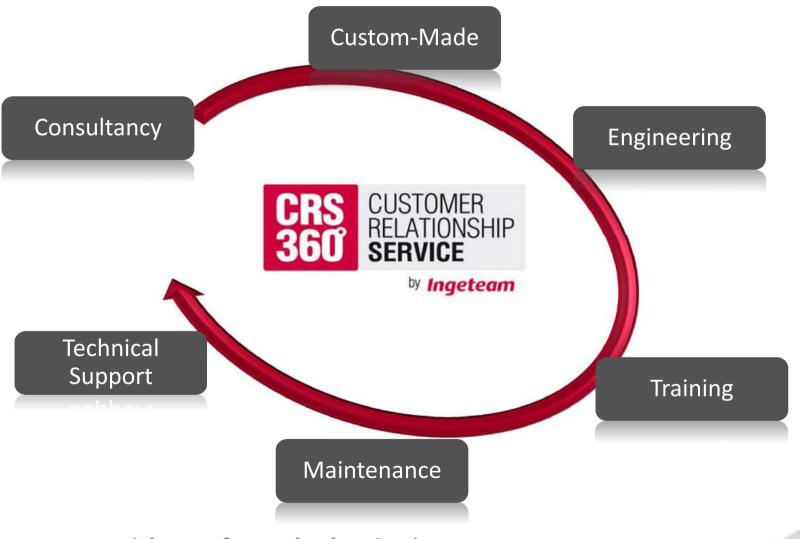
Battery integration on diesel Electric ships [Conclusions]

- In hybrid vessels, when batteries are used, equivalent fuel savings to those obtained in DC distribution systems can be achieved with AC distribution systems
- > When AC distribution systems are used, battery integration through the drive DC link presents important advantages:
 - Makes system integration easier, defining clearly the borderlines between system integrator and drive manufacturer
 - > Improves simplicity and competitiveness by minimizing the number of systems required
 - Improves redundancy and safety by the ability of distributing the battery energy between the different frequency drives existing in the vessel

INGETEAM On-Shore Power Supply



Solutions up to 4 x 11MVA



Main & Auxiliary Propulsions · Dredgers · Silent RV · Hybrid PTI-PTO · Battery integration · On-Shore Supply · Special Ships · Passenger Vessels

INGETEAM On-Shore Power Supply

INGETEAM services

Ingeteam

READYFOR YOUR CHALLENGES

Ingeteam partners with you from the beginning

INGETEAM services

After sales Services

Training and learning:

- Specialist for customers training courses at Ingeteam.
- Investment in professional training improves productivity.

On-SiteTechnical Support:

- Skilled engineers will support customer on-site for troubleshooting and technical assistance.
- Quick reaction time.

Emergency Technical Support:

24/7 immediate phone access to a specialized engineer with problem-solving capabilities.

INGETEAM MARINE SECTOR By the numbers

>45

Years of Experience In Integration Solutions

Vessels with complete Integration solutions

70

22 Presence In Number of Countries

3 Production across Number of Continents

Employees Worldwide

5%

Annual Investment of Turnover In R&D

INGETEAM Marine Systems

Why leading companies like yours are partnering with us?

PRODUCT RANGE:

We offer a comprehensive range of proven and reliable electrical equipment for many sectors.

R&D:

We are committed to innovation and development of full inhouse technology.

R&D expenditure accounts for 6% of net sales.

i i

FLEXIBILITY:

Our engineering teams can provide you with flexible solutions tailored to meet your project needs.

WORLDWIDE:

We have manufacturing facilities and service centers strategically located in Europe, Asia, North and South America to deliver the most efficient support and service to you.

EXPERIENCE:

We have 20+ GW of installed power capacity worldwide and 20+ years of experience in the Industry.

PARTNERSHIP:

We are partners, providing you active support for each specific project throughout the entire product life cycle.

